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Abstract 

   The primary goal of this paper is to describe several models that are currently used at the National 

Bank of the Republic of Macedonia (NBRM) for short-term forecasting of inflation - Autoregressive 

integrated moving average models (aggregated and disaggregated approach), three equation structural 

model and a dynamic factor model. Additionally, we evaluate models’ out-of-sample forecasting 

performance for the period 2012 q3 to 2016 q2 by using a number of forecast evaluation criteria such as 

the Root Mean Squared Error, the Mean Absolute Error, the Mean Absolute Percentage Error and the 

Theil’s U Statistics. Additionally, we constructed several composite forecasts in order to test whether a 

combination forecast is superior to individual models’ forecasts. Our results point to three important 

conclusions. First, the forecasting accuracy of the models is highest when they are used for forecasting 

one quarter ahead i.e. the errors increase as the forecasting horizon increases. Second, the 

disaggregated ARIMA model has the smallest forecasting errors. Third, majority of the forecast evaluation 

criteria suggest that composite forecasts are superior in comparison to the individual models. 
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Introduction 
 

The primary goal of the National Bank of the Republic of Macedonia (NBRM) is maintaining price 

stability. Having in mind that monetary policy decisions affect real economy with a lag, precise forecast of 

the future inflation developments is of vital importance. The NBRM uses a set of different methods for 

forecasting inflation. The medium term inflation forecast is produced within the Macedonian Policy 

Analysis Model (MAKPAM), which is a consistent framework of the transmission mechanisms in the 

Macedonian economy. Besides the MAKPAM model, the NBRM uses suit of models starting from simple 

time series model to small structural models to produce short-term inflation forecast. In this paper, we 

discuss models for short term inflation forecasting used at the NBRM, present forecasts from different 

models and evaluate their forecasting performances.  

Four models for inflation forecasting are discussed in the paper. The first one is small structural 

model consisting of three behavioral equations for the main Consumer Price Index (CPI) subgroups – 

food prices, energy prices and core inflation. The second one is based on the ARIMA modeling 

framework. A separate ARIMA model is estimated for all subcomponents of the CPI index and then, by 

using the individual subindicies’ weights, a forecast of the overall CPI inflation is obtained. The third 

model is ARIMA model for the total CPI (aggregated approach) and the fourth model is a dynamic factor 

model, which uses large set of information to produce the inflation forecast. As an alternative to using 

one forecasting model, we present several composite forecasts by using different weighting schemes. 

The models’ forecasting performances are evaluated using several criteria for comparing the models’ 

forecasting performance – the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the 

Mean Absolute Percentage Error (MAPE) and the Theil’s U Statistics (Theil).  

The paper is organized as follows. Overview of methods for short term forecasting is provided in 

the next section. In section 3, we discuss the main characteristics of the three models used for short term 

inflation forecasting at the NBRM. The performance evaluation exercise, between model comparison and 

the combination forecast are given in section 4. Finally, section 5 concludes.  

 

 

  



4 
 

Overview of forecasting techniques 

 

The literature on econometric forecasting is vast and numerous. One general classification of 

methods of forecasting is the one of Clements and Hendry (Clements & Hendry, 2004). They classify 

methods into seven groups: guessing, “rules of thumb” and “informal models”; expert judgment; 

extrapolation; leading indicators; surveys; time-series models and econometric systems. All these 

approaches have their advantages and weaknesses, and therefore, a reliable forecasting system will 

usually combine some/or all of them to produce a meaningful forecast. Given the topic of the research, 

this section will mainly deal with the core characteristics of time-series econometric methods and 

macroeconomic models. In brief, guessing and related methods rely solely on available information and 

predictability; leading indicators usually have good performance as long as there is strong connection 

between the indicator that is leading and the indicator that is led; surveys of consumers and businesses 

can be informative about future events, but rely on plans being realized. In summary, all these methods 

cannot be seen as a complete forecasting system and therefore, are rarely used as a sole forecasting 

technique. They are usually used for providing complementary information to the “core” forecast 

produced by time-series models or macroeconomic models.  

Time-series models describe historical patterns of data and are often considered to be the 

workhorse of the forecasting industry. Work in this field has its traits back in the second half of the last 

century. One of the oldest and most influential time series forecasting methodology is the ARIMA 

(Auto-Regressive-Integrated-Moving-Average) model developed in the 1970s by Box and Jenkins 

(Box & Jenkins, 1976). ARIMA forecasting is relatively simple procedure based on the idea that any 

stationary stochastic process can be approximated well by an autoregressive moving-average (ARMA) 

process. Past observations contain information about the future developments and therefore, each time 

series might be expressed as a sum of past values – the autoregressive (AR) part and past error terms – 

the moving average (MA) part. The series should be stationary; if not stationarity is achieved by 

differencing the time series. Nowadays, many extensions exist of the simple ARIMA model such as the 

conditional heteroscedasticity models (ARCH, GARCH, etc.), threshold AR models (TAR, STAR, SETAR, 

etc.) and AR fractional integrated MA (ARFIMA) models. When it comes to forecasting inflation by using 

ARIMA method two approaches can be met in the literature - aggregated and disaggregated. Aggregated 

approach refers to using one ARIMA model for forecasting total CPI index, whereas disaggregated means 

using different ARIMA models for forecasting individual CPI subindicies and then aggregating these 

forecasts into one by using the individual subindicies’ weights. The latter approach becomes especially 

popular nowadays. For example, Huwiler and Kaufmann (Huwiler & Kaufmann, 2013) used disaggregated 

ARIMA model for forecasting Swiss inflation.  



5 
 

Vector AR and ARMA (VAR; VARMA) models represent multivariate extensions of the univariate 

ARIMA models. Detailed overview of features of this class of models can be found in Lütkepohl 

(Lütkepohl, 1991) and Sims (Sims, 1980). In practice, VAR is simpler for estimation and therefore it is 

usually preferred over VARMA models. VAR models can be viewed as a generalization of the univariate 

AR models in a sense that includes not one, but a vector of time series. Moreover, all variables are 

treated as endogenous meaning that all of them are expressed as functions of the lagged values of the 

other variables in the system. VAR models can be used for forecasting and for economic analysis. 

Impulse response analysis or forecast error variance decompositions are typically used for disentangling 

the relations between variables in a VAR model. Besides higher flexibility, VAR models have one more 

additional strength i.e. unlike purely statistical ARIMA models, special extensions of VAR models, such as 

the structural VAR (SVAR), Bayesian VAR (BVAR) and Vector Error Correction Models (VECM) allow 

testing different economic theories. In the context of inflation, forecasting examples for the use of VAR 

model can be found in Lack (Lack, 2006). 

Another class of time series models used for forecasting purposes are the Unobserved 

Components (UC) models. Basically, these models decompose the time series into several unobserved 

components such as: a low-frequency stochastic trend; a periodic cycle; a seasonal component and an 

irregular component, normally considered to be a white noise. UC models are quite flexible framework in 

a sense that models can be univariate and multivariate; purely statistical or theoretical; stationary or 

augmented, to deal with non-stationary variables. The statistical representation of the UC models is the 

state-space form and the models are estimated by using the recursive Kalman filter algorithm. A detailed 

overview of the methodology of UC models can be found in Harvey (Harvey, 1989). A spectrum of UC 

models can be met in the empirical literature on inflation forecasting. The simplest one is purely statistical 

model that decomposes the CPI index into two unobserved components – trend and cycle (Clark, 1987). 

From the theoretical UC models, one of the most popular is the time varying Phillips curve model. 

Akdogan et al. (Akdogan, et al., 2012) estimated time varying Phillips curve model to forecast Turkish 

inflation in the short run. The specific of this model is that the parameters are treated as unobserved, 

time-varying components that evolve as random walk processes. 

All the above-mentioned methods use limited number of time series for forecasting. The focus of 

the time series forecasting literature in the past decade has shifted to methods that exploit many 

predictors. As discussed by Stock and Watson (Stock & Watson, 2006) examples of such methods are 

forecast combination (FC), factor models (FM) and the Bayesian model averaging (BMA). FC 

method combines multiple individual model-based forecasts to produce a single, pooled forecast. 

Especially important issue in this method is the choice of the weights (Timmermann, 2006). Several 

options are available starting from equal weights to model based time varying parameter weights. The 

basic idea behind FM is that each economic variable have one common component that is driven by 
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unobserved common factors and an idiosyncratic component, which is specific for each variable in the 

dataset. Once the common factors are estimated, they can be used to forecast variable of interest. BMA 

method can be viewed as a Bayesian approach to combination forecast. In this method, the weights are 

computed as formal posterior probabilities that the models are correct.  

Time-series models, as emphasized previously, are mainly used for short-term forecasting of the 

macroeconomic variables. A reliable medium/long term economic forecast is usually conducted by using 

macroeconomic model that describes the linkages between different economic sectors. 

Macroeconomic models started to develop in the period around the Second World War. They were 

estimated using econometric techniques and the Keynesian theory. Tinbergen model and Cowles 

Commission Institute model were among the first large-scale macroeconomic models. The latest 

generation of macroeconomic models today are the Dynamic Stochastic General Equilibrium (DSGE) 

models, which, by structure, are New Keynesian models, with microeconomic foundation and a well-

defined equilibrium. Recently, special attention has been devoted to the development and usage of Agent 

Based Models (ABM) for forecasting purposes and policy analysis. ABM models systematically model the 

individual behavior of all the agents in the system, and the system behavior emerges from all individual 

components.  
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Models for short term forecasting of Macedonian inflation 

 

Small structural model  

 

The Small structural model (SSM) is small, estimated model that defines the overall inflation as a sum of 

three sub-components – energy inflation (𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

), food inflation (𝑐𝑝𝑖𝑡
𝑓𝑜𝑜𝑑

) and core inflation 

(𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒), where the core inflation is defined as total inflation excluding the energy and the food 

component. The three subcomponents are modeled by separate behavioral equations.  

 

𝛥𝑐𝑝𝑖𝑡
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

= f(𝛥𝑐𝑝𝑖𝑡−1
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

, 𝛥𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡 ,𝛥𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡−1) (1) 

𝛥𝑐𝑝𝑖𝑡
𝑓𝑜𝑜𝑑

= f(𝛥𝑐𝑝𝑖𝑡−2
𝑓𝑜𝑜𝑑

, 𝛥𝑤𝑚_𝑖𝑛𝑑𝑒𝑥𝑡−6, 𝛥𝑐𝑝𝑖𝑡−3
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

) (2) 

𝛥𝑐𝑝𝑖𝑡
𝑐𝑜𝑟𝑒 = f(𝛥𝑐𝑝𝑖𝑡−1

𝑐𝑜𝑟𝑒 , 𝛥𝑐𝑝𝑖𝑡−4
𝑓𝑜𝑟𝑒𝑖𝑔𝑛

, 𝛥𝑐𝑝𝑖𝑡−3
𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚

) (3) 

 

where 𝑜𝑖𝑙_𝑖𝑛𝑑𝑒𝑥𝑡  stands for world oil prices, 𝑤𝑚_𝑖𝑛𝑑𝑒𝑥 is an index of wheat and maize prices and 

𝑐𝑝𝑖
𝑓𝑜𝑟𝑒𝑖𝑔𝑛

 is foreign effective CPI index. Energy inflation is included as an additional explanatory variable 

in the equations describing food inflation and core inflation, with a suitable lag length, in order to capture 

the second round effects of developments in energy prices on food and core component. All variables are 

expressed in changes to achieve stationarity. 

 The total CPI inflation is obtained as a weighted sum of the sub-components, where the weights3 

are equal to the share of these sub-components in the total CPI index. 

 

𝑐𝑝𝑖𝑡
𝑡𝑜𝑡𝑎𝑙 = 0.37 ∗ 𝑐𝑝𝑖𝑡

𝑓𝑜𝑜𝑑
+ 0.04 ∗ 𝑐𝑝𝑖𝑡

𝑝𝑒𝑡𝑟𝑜𝑙𝑒𝑢𝑚
+ 0.48 ∗ 𝑐𝑝𝑖𝑡

𝑐𝑜𝑟𝑒 + 0.08 ∗ 𝑐𝑝𝑖𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

+ 0.03

∗ 𝑐𝑝𝑖𝑡
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

 
(4) 

 

where  𝑐𝑝𝑖𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

 and 𝑐𝑝𝑖𝑡
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

 are the domestic prices of electricity and heating. 

In the forecasting horizon, we use external forecast for the explanatory variables. The prices of 

electricity and heating are mainly regulated, and the usual assumption is that they will remain 

unchanged, unless there is preannounced correction that will take place in the forecasting period.   

                                                           
3 Consumer Price Index by COICOP classification and Retail Price Index – January 2017, News release of the State Statistical Office, 
No.4.1.17.10.  
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Dynamic Factor Model  
 

Factor models are among the most popular methods for nowcasting and short-term forecasting. 

The basic idea behind this approach is that the variable of interest is a function of several unobservable 

factors. In other words, the covariance between large number of economic time series with their leads 

and lags can be represented by few unobserved factors. These factors, as shown by Stock and Watson 

(Stock & Watson, 2002), can be estimated by principle components.  

By employing Principal Component Analysis, we estimate six principal components from a set of 

73 economic and financial variables (Table 1) which are of importance for price dynamics in Macedonia. 

Data used is in monthly frequency, filtered by X12 ARIMA method and then standardized by using log 

differences. In the first step, the time series of the factors are estimated: 

𝑋𝑖𝑡 =  𝜆𝑖𝐹𝑡 + 𝜀𝑖,𝑡 (5) 

With a VAR (1.1), the factors are forecasted over the forecast horizon: 

𝑓𝑡
𝑄 =  ∑ 𝐴𝑘𝑓𝑡−𝑘

𝑄 + 𝐵𝑣𝑖,𝑡

𝑝

𝑘=1

 (6) 

The forecasted CPI is obtained with the following specifications: 

∆𝑐𝑝𝑖𝑡
𝑡𝑜𝑡𝑎𝑙 = c + 𝑎1 ∗ ∆𝑐𝑝𝑖𝑡−4

𝑡𝑜𝑡𝑎𝑙 + 𝑎2 ∗ 𝜀𝑡−12 + 𝑎3 ∗ 𝑓1 + 𝑎4 ∗ 𝑓2 + 𝑎5 ∗ 𝑓4 + 𝑎6 ∗ 𝑓5 + 𝑎7 ∗ 𝑓6 (7) 

Total CPI is function of its own lags(∆𝑐𝑝𝑖𝑡−4
𝑡𝑜𝑡𝑎𝑙), moving average term (𝜀𝑡−12) and the estimated 

factors (𝑓1, 𝑓2, 𝑓4, 𝑓5, 𝑓6). 
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Table 1. Variables included in the DFM 

 
 

Disaggregate CPI and total CPI ARIMA model 

 

We estimate disaggregate models at the lowest level, for which price indices and weights are 

available from the State Statistical Office (SSO) of the Republic of Macedonia. Currently price indices are 

available at 4 digit COICOP CPI. At this level of disaggregation, the CPI basket comprises 87 subindicies. 

Estimating models at such a low level of disaggregation may improve forecast accuracy because of the 

heterogeneity across the CPI subindicies. The sources of heterogeneity are of economic and 

methodological nature. In either case, the price data exhibits statistical regularities which can be used in 

our forecasting models. For most of the CPI subindicies, we use data since January 2003. Some of the 

series are shorter and start from January 2010, when the SSO started to provide them in more detailed 

disaggregation. 

Our forecasts for the vast majority of the CPI subindicies (around 90%) are based on ARIMA 

models. As stated in overview section above, the ARIMA methodology is based on the idea that any 

stationary stochastic process can be approximated well by an autoregressive moving-average (ARMA) 

process. To keep the exposition simple we omit the constant and assume that the process is integrated of 

order one. Thus, for a price index in logarithms, 𝑝𝑡, an ARIMA model of order (p, 1, q) can be written as: 

List of variables

Prices and exchange rates External sector Monetary sector

CPI (total) Exports, fob Banks Foreign Assets 

 Food and non-alcoholic beverages Imports, fob Claims on central government

 Alcoholic beverages, tobacco Machinery and transport equipment – Exports Claims on public nonfinancial corporations

 Clothing and footwear Machinery and transport equipment – Imports Claims on private sector

 Housing, Water, Electricity, Gas and other fuels Other transportation equipment – Exports Other Banks assets 

 Furnishings, household equipment and routine maintenance of the house Other transportation equipment – Imports Banks Foreign Liabilities 

 Health Road vehicles – Exports M4

 Transport Road vehicles – Imports Currency in circulation

 Communication Oil – (Export) Deposits 

 Recreation and culture Oil – (Import) Total short-term deposits 

 Education Total long-term deposits 

 Restaurants and hotels Total household deposits 

 Miscellaneous goods and services Total enterprise deposits 

Total CPI excl. Energy and Food (Core inflation) NBRM international reserves 

Total CPI excl. Energy Required reserve 

Producer price index (PPI)

Brent crude oil

HWWI Index (EUR) - Total

HWWI index (USD) – Total excl. energy

NEER

REER(CPI)

Real sector Labour market

Industrial production (total) Total registered unemployment 

   Energy Newly registered unemployed

   Intermediate goods Employed from the register 

   Capital goods Deleted from the register for reasons other than employment 

   Durable consumer goods Nominal net wage

   Non-durable consumer goods Real net wage

Mining and quarrying Nominal net wage in public administration

Manufacturing Nominal net wage in industry

Electricity, gas and water supply Real net wage in public administration

Tourist arrivals Real net wage in industry

Tourist nights Nominal gross wage

Real gross wage 

Nominal gross wage in public administration

Nominal gross wage in industry

Real gross wage in public administration

Real gross wage in industry
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∆𝑝𝑡 = 𝜙1∆𝑝𝑡−1 + 𝜙2∆𝑝𝑡−2 + ⋯ + 𝜙𝑝∆𝑝𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

 

                                                   AR part                                                                             MA part 

(8) 

 

where p and q give the number of autoregressive and moving average terms, respectively, and ∆ 

denotes the first difference. The error term 𝜀𝑡 is assumed to follow a white noise process with variance 

𝜎2. 

If the price changes display a seasonal pattern, we can extend the case above to a seasonal 

ARIMA model. For price data in monthly frequency, there is often a seasonality at lag 12 which motivates 

us to add a seasonal AR term with coefficient 𝜌 to the specification. The seasonal ARIMA model can then 

be written as: 

∆𝑝𝑡 − 𝜌∆𝑝𝑡−12 = 𝜙1(∆𝑝𝑡−1 − 𝜌∆𝑝𝑡−13) + 𝜙2(∆𝑝𝑡−2 − 𝜌∆𝑝𝑡−14) + ⋯ + 𝜙𝑝(∆𝑝𝑡−𝑝

− 𝜌∆𝑝𝑡−𝑝−12) + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 
(9) 

 

Note that if 𝜌 = 1 the only difference to the non-seasonal case is that we remove a seasonal unit 

root by seasonally differencing∆𝑝𝑡. If 𝜌 = 0, we are back to the nonseasonal ARIMA model. 

For each CPI subindex, we select a model in two steps. First, we analyze the statistical properties 

of each price series to determine the order of integration and decide whether it exhibits a seasonality. 

This analysis is performed on an irregular basis or only every few years. We assume that all CPI items are 

integrated of order one and use them in first log-differences (d = 1). This assumption is tested by means 

of two unit root tests: (Dickey & Fuller, 1979) and (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). The 

tests support this assumption at the 5% level, for most of the 87 individual CPI items. Next, to identify 

seasonal patterns in the price changes, we examine the autocorrelation function (ACF). A seasonality at 

12 months leads to a significant spike in the ACF at multiples of 12, and for those items, we allow for a 

seasonal AR term. 

In the second step, we choose the lag order of the models on the basis of an automatic lag 

selection criterion. This procedure is automated and the lag order is selected every time the models are 

reestimated. For each CPI subindex, numerous models with different lag orders are estimated. The best 

model is then selected based on the Schwarz information criterion: 
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𝑆𝐼𝐶 = 𝑙𝑜𝑔 (
𝑆𝑆𝐸

𝑇
) + 𝑘

𝑙𝑜𝑔 (𝑇)

𝑇
 (10) 

 

where SSE denotes the sum of squared errors, T the number of observations and k the number 

of estimated parameters. The algorithm selects the model with the smallest SIC. As we know, more lags 

improve the fit of the model and therefore lead to lower SSE and SIC. However, choosing an over-large 

lag order or overfitting of the model can lead to inconsistency of the maximum likelihood estimator 

(Neusser, 2009, pp. 89-91) and reduce the out-of-sample forecast performance. For that reason, the 

Schwarz information criterion contains a penalty term which increases with the number of parameters k 

so that the criterion favors a more parsimonious specification. 

For some of the CPI subindicies, we do not use the ARIMA forecast but replace it with ad-hoc 

assumptions. These ad-hoc assumptions include an extrapolation of the index by its most recent value, 

the average month-on-month growth rate or the average year-on-year growth rate. These assumptions 

are used in several cases. First, a visual inspection of the forecast may point to implausible and/or 

extreme price movements. Next, we replace the ARIMA forecast if we have information on special factors 

and events which affect only some of the items, mainly administered prices in the CPI basket. Some 

examples are electricity and central heating price increases that have been announced, or the tax 

increase on tobacco. If the resulting price effects can be quantified, we include these as add-factors in 

the forecast. 

For prices of oil products, we use external assumptions. Prices of oil products, which represent 

regulated prices, are set every two weeks by the Energy Regulatory Commission taking into account past 

developments of crude oil spot price in USD and USD/MKD exchange rate. Therefore, we use exogenous 

forecast about crude oil prices and USD/EUR exchange rate4 from external source to make an assumption 

regarding these prices in the forecasting period.  

At the end, in order to obtain forecast for total inflation, we aggregate the forecasts from 

estimated ARIMA models for individual CPI subindicies and the forecasts for subindices that include ad-

hoc and external assumptions, by using their corresponding weights. For comparison and forecast 

evaluation purposes, we also apply direct ARIMA method to the total CPI (equation 8). Hence, in the next 

section, beside the inflation forecast from structural model and DFM, we evaluate the inflation forecast 

generated from disaggregate ARIMA forecast of individual CPI items and from ARIMA forecast of total 

CPI. 

  

                                                           
4 Since MKD is pegged to EUR, forecast developments of USD/EUR are applied to USD/MKD exchange rate. 
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Forecast evaluation 
 

The forecast evaluation exercise is performed in two parts. First, we make “out-of-sample” 

forecast with the four models described in the previous section for 16 periods - from 2012 q3 to 2016 q2. 

In particular, we use historical data to estimate models for the period 1997 – 2012 q2 and then start the 

forecast. We forecast in each quarter from 2012 q3 to 2016 q2 for a period of one year (four quarters). 

In order to follow closely the forecasting routine when producing actual short term forecasting we re-

estimate the models in each quarter within the forecasting horizon and we employ new assumptions for 

the exogenous variables. In the evaluation part, we check the forecasting performance of each model for 

a period up to four quarters - one quarter ahead, two quarters ahead, three quarters ahead and four 

quarters ahead. The second part of the evaluation exercise presents several composite forecasts. The 

intention is to compare the accuracy of the composite forecasts alongside the accuracy of the forecasts 

produced by the individual models.  

We use several criteria for comparing the models’ forecasting performance – the Root Mean 

Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the 

Symmetric Mean Absolute Percentage Error (SMAPE) and the Theil’s U Statistics (Theil). In essence, all 

these statistics provide a measure of the distance of the true from the forecasted values and each of 

them has its weaknesses and its strengths. 

The RMSE and MAE are the most widely used forecast evaluation metrics.      

𝑅𝑀𝑆𝐸 = √∑(𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡)
2

𝑁

𝑖=1

/𝑁 (11) 

𝑀𝐴𝐸 = ∑ 𝑎𝑏𝑠(𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡)

𝑁

𝑖=1

/𝑁 (12) 

 where N is the number of observations,  𝑖𝑛𝑓𝑎𝑐𝑡 is the actual (realized) inflation and 𝑖𝑛𝑓𝑓𝑜𝑟 is the 

forecasted inflation. 

Both measures are relative and scale dependent i.e. should be used to compare forecasts of the 

same time series across different forecasting models. The smaller the RMSE and MAE, the better the 

forecasting performance of the model.  

 Unlike these two measures, MAPE is scale independent measure. On the other hand, its main 

issue is to be undefined when the denominator is null. In this case, it is recommended to use the SMAPE 

criterion.  
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𝑀𝐴𝑃𝐸 = 100 ∑ 𝑎𝑏𝑠(
𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡

𝑖𝑛𝑓𝑎𝑐𝑡

𝑁

𝑖=1

)/𝑁 (13) 

𝑆𝑀𝐴𝑃𝐸 = 100 ∑
𝑎𝑏𝑠(𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡)

(𝑎𝑏𝑠(𝑖𝑛𝑓𝑓𝑜𝑟) + 𝑎𝑏𝑠(𝑖𝑛𝑓𝑎𝑐𝑡))/2

𝑁

𝑖=1

/𝑁 (14) 

  

Theil’s U statistics or Theil’s coefficient of inequality is another criterion that measures forecast 

accuracy. There are two Theil’s coefficients labeled as Theil U1 and Theil U2 coefficient.  

 

𝑇ℎ𝑒𝑖𝑙 𝑈1 =
√∑ (𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡)2/𝑁𝑁

𝑖=1

√∑ 𝑖𝑛𝑓𝑓𝑜𝑟
2/𝑁𝑁

𝑖=1 + √∑ 𝑖𝑛𝑓𝑎𝑐𝑡
2/𝑁𝑁

𝑖=1

 (15) 

𝑇ℎ𝑒𝑖𝑙 𝑈2 =
√∑ (𝑖𝑛𝑓𝑓𝑜𝑟 − 𝑖𝑛𝑓𝑎𝑐𝑡)2𝑁

𝑖=1

√∑ 𝑖𝑛𝑓𝑎𝑐𝑡
2𝑁

𝑖=1

 (16) 

Values closer to 0 for both, Theil’s U1 and U2 criteria, indicate better forecasting performance of 

the evaluated models; if Theil’s U1 and U2 are equal to zero than the forecast is perfect. Theil U1 is 

bounded between 0 and 1, whereas Theil U2 is not bounded.  

Forecasts of the alternative models with different time span are shown in Figure 1. The 

calculated forecast evaluation criteria are presented in Table 2.  
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Figure 1. Comparison of the forecasts of inflation using different models and different 

forecasting horizon 
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Table 2. Forecast evaluation criterions  

 

RMSE MAE MAPE SMAPE Theil U1 Theil U2 

structural model (t+1) 0.68 0.54 95.19 81.76 0.16 0.67 

DFM (t+1) 0.73 0.63 101.96 101.30 0.17 1.06 

ARIMA disagg cpi (t+1) 0.68 0.49 68.87 80.60 0.16 1.37 

ARIMA tot cpi (t+1) 0.69 0.53 106.14 80.13 0.15 0.55 

structural model (t+2) 1.42 1.14 196.78 102.49 0.34 1.61 

DFM (t+2) 1.37 1.11 236.30 120.83 0.31 1.89 

ARIMA disagg cpi (t+2) 1.25 1.04 244.55 128.76 0.33 1.28 

ARIMA tot cpi (t+2) 1.12 0.91 166.57 120.35 0.25 1.73 

structural model (t+3) 1.78 1.48 365.55 122.06 0.44 2.51 

DFM (t+3) 1.84 1.67 437.56 130.53 0.40 3.19 

ARIMA disagg cpi (t+3) 1.57 1.39 278.28 130.19 0.44 2.66 

ARIMA tot cpi (t+3) 1.67 1.48 438.83 127.25 0.37 1.93 

structural model (t+4) 1.91 1.57 286.87 135.10 0.48 5.37 

DFM (t+4) 2.33 2.11 523.08 132.37 0.50 5.05 

ARIMA disagg cpi (t+4) 2.01 1.74 380.03 143.80 0.56 3.14 

ARIMA tot cpi (t+4) 2.25 2.11 468.24 136.85 0.50 5.00 

 

The graphical examination of the forecasts and the calculated statistics suggest two important 

conclusions. First, the forecasting accuracy of all models is higher the shorter the forecasting horizon is; 

as the forecasting horizon increases the forecasting accuracy of the models declines. This is an expected 

result since statistical models and small structural models are usually superior when used for nowcasting 

and short-term forecasting of macroeconomic variables. On the other hand, meaningful medium term 

forecast should be based on a rich structural model that encompasses all linkages and transmission 

channels of the economy. The second conclusion refers to the performance of the individual models. In 

general, the vast of the evaluation criteria suggest that the disaggregated CPI ARIMA model has 

strongest forecasting performance and this is especially true when forecasting one and three quarters 

ahead. In addition, the total CPI ARIMA model and the structural model are superior in some cases, 

depending on the criterion and the forecasting horizon, whereas the performance of the DFM model is 

relatively weaker.  

As an additional part of the evaluation exercise, we constructed different composite forecasts and 

compared their forecasting performance to the individual models. Timmerman (Timmerman, 2006) 

emphasizes at least three main reasons for why forecast combinations may produce better forecast on 

average than individual forecasting model. First, forecast combination can be motivated by a simple 
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portfolio diversification (hedging) argument. Second, there may be unknown instabilities (structural 

breaks) that sometimes favor one model over another. By combining forecasts from different models, the 

decision maker may obtain forecasts that are more robust to these instabilities. Third, forecast 

combination may be desirable as individual forecasting models may be subject to misidentifications bias 

that are unknown to the model operators. In this case, combining forecasts may average out the biases, 

improving forecast accuracy. We constructed several composite forecasts by using different weights – 

mean, median, least square estimates, mean square error and MSE ranks. Having in mind that models’ 

precision is highest in one-quarter ahead forecasting horizon, the forecast evaluation period is only one 

quarter ahead. Figure 2 shows the performance of the composite forecasts (CF)5 against individual 

forecasts and the evaluation statistics are given in Table 3. 

 

Figure 2. Comparison of one-quarter ahead forecasts of inflation using different models and 
composite forecasts 

 

 

 

 
 

 

 
 

 
 

 

                                                           
5 The Composite forecasts are calculated as weighted averages of the individual forecasts by using the following weighting schemes 
- mean, median, least square estimates, mean square error and MSE ranks. The calculation was performed in Eviews 9.  
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Table 3. Forecast evaluation of individual models and composite forecasts 

  
RMSE MAE MAPE SMAPE Theil U1 Theil U2 

structural model (t+1) 0.68 0.54 95.19 81.76 0.16 0.67 

DFM (t+1) 0.73 0.63 101.96 101.30 0.17 1.06 

ARIMA disagg cpi (t+1) 0.68 0.49 68.87 80.60 0.16 1.37 

ARIMA tot cpi (t+1) 0.69 0.53 106.14 80.13 0.15 0.55 

CF simple mean 0.58 0.50 83.83 76.36 0.13 0.82 

CF simple median 0.63 0.53 89.10 86.71 0.15 0.82 

CF least-squares 0.61 0.52 86.72 87.76 0.14 0.95 

CF mean square error 0.58 0.50 83.71 76.39 0.13 0.82 

CF MSE ranks 0.59 0.49 80.45 78.60 0.14 0.88 

CF = composite forecast 

In line with our expectations, the majority criteria suggest that the composite forecasts are 

superior in accuracy as compared to individual models, although the differences between composite 

forecasts and forecasts obtained from the disaggregated CPI ARIMA model in most of the cases are 

rather small. In addition, it should be acknowledged that more formal forecast combination exercises are 

performed by using more individual forecasts compared to the number of individual forecasts used in our 

research. For example, Kapetanious et al. (2008) used 16 competing models, Bjørnland et al. (2008) used 

10 models, and Akdogan et al. (2012) used 14 models for constructing composite forecasts for the 

macroeconomic variables. 

 

Concluding remarks 

 

 Forecasting is very important for policy makers. Effectiveness of policy choices and measures is 

largely dependent upon timely and accurate forecast of the macroeconomic variables because of the 

existence of considerable transmission lags. 

This study provides a discussion on several models used for short-term forecasting of inflation at 

the NBRM and evaluation of their forecasting performance. Forecasting performance was evaluated by 

using standard evaluation criteria such as Root Mean Squared Error, the Mean Absolute Error, the Mean 

Absolute Percentage Error and the Theil’s U Statistics (Theil). Additionally, we constructed several 

composite forecasts in order to test for the superiority of the combination method as opposed to 

individual models’ forecast.  
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 Our results point to three important conclusions. First, the forecasting accuracy of the models is 

inversely related to the forecasting horizon – the longer the forecasting horizon the higher the forecasting 

errors. Second, in general, the disaggregated CPI ARIMA model has smallest forecasting errors. Third, 

majority of the forecast evaluation criteria suggest that composite forecasts are superior in comparison to 

the individual models. 

Future work in this field should be focused on further development and improvement of currently 

used models. In addition, efforts should be made in the area of new model development. In this sense, 

forecasting literature emphasizes the Bayesian VAR, Bayesian Model averaging and mixed-frequency 

BVAR as models with very good forecasting performances. Enlarging the suite of models used for inflation 

forecasting, will, in turn be beneficial for the forecasting accuracy of the composite forecast indicators, as 

well.  
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